Endodontic retreatment of mandibular molars with the presence of missed middle mesial root canals: An important clinical lesion

Abdullah Başoğlu1, Hatice Harorlı1, Kürşat Er1

1 Akdeniz University, Faculty of Dentistry, Department of Endodontics, Antalya, Türkiye

Abstract

Aim: Untreated root canals may have a direct impact on root canal treatment (RCT) outcome. The aim of this case report is to describe the nonsurgical root canal retreatment of two mandibular first molars in a patient's mesial roots that had previously missed middle mesial root canals (MMMC).

Methodology: A 14-year-old female was referred to our clinic with the complaint of pain in the posterior areas of the right and left mandibula. During the examination, previous RCTs [teeth 36 (mandibular left first molar) and 46 (mandibular right first molar)] were observed. Besides, these teeth have periradicular lesions in the mesial roots probably due to unsuccessful previous treatment. Nonsurgical retreatment was suggested and accepted. Access cavities were prepared and the unnoticed MMMCs were detected at the isthmus connecting both mesiobuccal and mesiolingual canals. All the root canals were shaped with NiTi rotary endodontic files. During the shaping, the root canals were irrigated copiously with NaOCl, EDTA, clorhexidine, and saline solutions under a certain protocol. Calcium hydroxide was used for intracanal dressing. Gutta-percha and a resin-based root canal sealer were used for filling. Coronal restorations of the teeth were completed with a composite resin.

Conclusion: At follow-up examinations after 3-, 6-, and 12-months, the teeth were asymptomatic and radiographically showed repair of the lesion. Healing was achieved without any need for further endodontic surgical intervention.

Keywords: Anatomy, case report, endodontic retreatment, middle mesial canal
Persistent bacterial infection, inadequate root canal filling, untreated canals, improper coronal seal/restoration, and procedural errors as variables can be responsible for apical periodontitis and may cause endodontic failure (1). For this reason, the root canals should be properly scouted, debrided, disinfected, and filled so the occurrence, or continuity, of periapical periodontitis can be minimized (2-4). When the primary root canal treatment (RCT) fails, nonsurgical root canal retreatment (NRCT) is usually considered to be the first treatment option in these cases. Thus, the main objective of NRCT is to remove all previous fillings and to allow thorough reinstrumentation, disinfection, and refilling of the root canals. Specifically, curved canal retreatment is difficult due to potential complications. Therefore, several techniques have been developed and suggested for removing the fillings: endodontic NiTi file systems with or without heat, solvents, and/or ultrasound, and lasers (5). However, complete removal of fillings did not occur with any of the techniques investigated.

Variations in tooth anatomy should always be considered because limited knowledge of morphology may increase the likelihood of missing root canals during treatment (1). Due to its small prevalence and small diameter, root canals such as maxillary molars second & third mesiobuccal canals, or mandibular molars middle mesial canal (MMC), may go unnoticed, which may compromise the RCT (4, 6). The reported (1, 7-9) incidence of RCT failure due to missed canals ranging from 12% to 42% in different populations.

The presence of an independent MMC in mandibular molars was first reported by Vertucci & Williams (10) and Barker et al. (11) in 1974. According to Pomeranz et al. (12) MMCs can be classified into three categories: fin, confluent, or independent. Fin is when a file can pass freely between the mesiobuccal (MB) or mesiolingual (ML) canal and the MMC. Confluent is when the MMC originates as a separate orifice but apically joins with the MB or ML canal, and independent is when the MMC originates as a separate orifice and terminates as a separate foramen. A broad single mesial canal in which three master cones could be cemented to the apex at the same time was also included as an independent MMC (12).

The following case report describes the successful nonsurgical root canal retreatment of two mandibular first molars with periapical lesions of their mesial roots which have previously unnoticed MMCs.

**Case Report**

A 14-year-old female was referred to the Department of Endodontics in the Dental Faculty of Akdeniz University with a complaint of pain in the posterior areas of the right and left mandibula. The past medical history of the patient was non-contributory. On radiographic examination (Fig. 1), there were previous RCTs performed on teeth 26 (maxillary left first molar), 36 (mandibular left first molar), and 46 (mandibular right first molar). In addition, radiolucencies were observed at the periradicular regions of mesial roots of teeth 36 and 46. A composite restoration and a seconder caries were detected in tooth 16 (maxillary right first molar). On extraoral examination, there was a small light expansion on the relevant areas of the complaint. On intraoral examination, there was a small swelling of the vestibule cortex in the concerning areas covered with normal mucosa. The teeth (teeth 36 and 46) were slightly tender to percussion with probing and exhibited normal mobility. According to the patient, the RCTs had been performed a few years ago. Based on these findings, the patient was diagnosed as having periradicular lesions of the right (tooth 46) and left (tooth 36) mandibular first molars (mesial roots) due to unsuccessful previous RCTs. The root canal retreatment was suggested and accepted. At the same visit, RCTs were initiated on these teeth. The treatment procedures described below were first applied to tooth 36 and then tooth 46.
determined radiographically. During the shaping, the canals were irrigated copiously with 2.5% NaOCl using a 5 mL syringe and a 27 G needle throughout the treatment. The final irrigation was accomplished with NaOCl, EDTA, and chlorhexidine. At this stage, an irrigation activation was performed using a sonic device (EndoActivator; Dentsply Sirona, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA) for 30 sec per each irrigant. Among these irrigants, the saline was used for additional irrigation without activation. After drying the canals with sterile paper points, they were dressed with calcium hydroxide (Kalsin; Aktu, Izmir, Turkey) using a lentulo file. Sterile cotton pellets were placed into access cavities before sealing with a temporary filling material (Cavit; 3M ESPE, Seefeld, Germany).

When the patient returned after two weeks, the teeth were asymptomatic. The canals were irrigated with 2.5% NaOCl, and a CanalBrush (Coltene Whaledent, Langenau, Germany) was used to remove the calcium hydroxide. After that, the root canals were dried with sterile paper points and filled with gutta-percha (Dentsply Sirona) and a resin-based root canal sealer (Diaproseal; DiaDent, Chongchong, Korea) using a single cone filling technique. Glass ionomer cement (Ketac-Molar Easymix; 3M ESPE) was placed over the gutta-percha, and restoration of tooth was completed with a composite resin (Arabesk; Voco, Cuxhaven, Germany). A post-operative radiograph was taken to ensure the quality of the filling (Fig. 2).

After 3- and 6-month follow-up, radiographs showed further bony healing (Fig. 3 A&B for 3 months; C&D for 6 months). At 12-month follow-up, the patient was completely asymptomatic, and periapical radiography showed resolution of the periapical lesion totally (Fig. 3 E&F). Clinical examination showed no sensitivity to percussion or palpation, and the soft tissues were healthy.

Discussion

The requirement for a successful RCT is the elimination of all irritants from the root canal system completely utilizing appropriate shaping and irrigation, followed by its three-dimensional filling with a biocompatible material. It is known that the teeth demonstrate a variety of canal morphologies with additional canals, dips, concavities, intracanal communications, inaccessible fins, apical ramifications, and other regions that files cannot reach (13). Of course, these complex and variable structures are very difficult to treat in an ideal way.

The clinician should master a variety of techniques or materials and choose the most appropriate one for the removal of necrotic tissue and bacteria. However, to
date, researchers or clinicians cannot develop a new method or protocol that can completely clean and fill root canals.

Mandibular molars traditionally have two main canals in the mesial root (MB and ML) and one or two main canals in the distal root; however, a third MMC that is situated in the developing groove between the two main canals of the mesial root may also be seen (4, 14). MMC may have its own orifice, branch off of the MB or ML canals, and finish separately or merge with one of these main canals (15). Earlier studies using conventional analytical tools have reported that the frequency of the MMC varies from 0.26-6% (15). However, new studies (16, 17) using advanced imaging techniques have shown that its incidence may be as high as 53.8%. Therefore, locating an existing MMC in order to decrease the microbial load in it, is of the utmost importance when aiming to increase the RCT success. According to Cantatore et al. (18), missing canals resulted in a high percentage of apical periodontitis and failed endodontically treated teeth. Furthermore, the frequency of post-treatment disease was greater in multirooted molars, where the likelihood of missing an additional canal was higher (4, 18).

Costa et al. (19) investigated the frequency of post-treatment apical periodontitis in root-filled teeth with at least one untreated root canal and discovered that the frequency of apical periodontitis in teeth with at least one untreated canal was significantly higher (98%) than in teeth with all canals treated. Ng et al. (20) reported a pooled success rate of 85% for retreatment of mandibular molars and also stated that the presence of preoperative apical lesions, apical extrusion of root canal filling, and quality of coronal restoration were significant prognostic factors that would, in fact, compromise the retreatment outcomes.

Several studies (21-23) found that MMC preparation may enhance the risks of fracture or perforation in the mesial roots of mandibular molars. Nawar et al. (23) researched the optimum shaping parameters of the MMC in mandibular first molars using a finite element analysis test and stated that progressive mechanical enlargement of the MMC was associated with a reduction in tooth life expectancy, but the minimal shaping size used in this study (25/.04) caused the least reduction. This is in agreement with Keles et al. (21) and Kılıç et al. (22), despite differences in methodology. Keles et al. (21) stated that preparation of the MMCs up to size 30 with a .07 taper significantly decreased the fracture strength. As a result, we utilized the VDW.ROTATE rotary files (size 25.04) for MMC, but ProTaper Universal retreatment and ProTaper Next X1-X4 files for the other canals in this case.

Using magnification and illumination are important to perform a RCT, especially in complicated cases; because, this advanced diagnostic equipment provides more definitive visibility of root canal anatomy. In this case, as we have used a dental loupe, no canal was overlooked in the related tooth.

**Conclusion**

Mandibular molars have a complex root canal morphology. Adequate knowledge and clinical thoroughness are essential for successful endodontic treatment, as they play a key role in managing abnormal anatomic configurations. Careful exploration between canal orifices is essential to prevent missed canals and adverse clinical outcomes. Magnification and illumination are essential for accurate reading. This case report illustrates that the two mandibular first molars with periapical lesions of their mesial roots, which have previously unnoticed MMCs can be managed with nonsurgical root canal retreatment, which can result in satisfactory periradicular healing.

**Disclosures**

**Patient Consent for Publication:** Written informed consent was obtained from the patient.

**Peer-review:** Externally peer-reviewed.


**Conflict of Interest:** No conflict of interest was declared by the authors.

**Funding:** The authors declared that this study has received no financial support.

**References**


