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Abstract  

 
Aim: This study compared the stress distributions of endodontically 

treated tooth restored with carbon and titanium post under thermal 

and mechanical loading conditions. 
Methodology: A 3-dimensional finite element model was created to 

represent in a labiolingual cross-sectional view of an endodontically 

treated maxillary central incisor tooth with its supporting structures. 
It was modified according to two post systems with different physical 

properties consisting titanium, and carbon fiber. Stress distribution 

and stress values were then calculated by considering the three 

dimensional von Mises stress criteria. 

Results: A 100-N static vertical occlusal load was applied on the 
node at the center of occlusal surface of the tooth. The von Mises 

stress values for carbon post model was on the coronal third and the 

cervical area of the root in the range of 436,16 and 3,59 MPa,  for 

titanium post model was 590,55 and 3,05 MPa. Thermal stress values 
for carbon post model showed that maximum stress concentrations 
were noted on the coronal third and the top of the post area of the 
root in the range of 509,94 and 6,38 MPa. Titanium post model 
showed that maximum stress concentrations were noted on the 
coronal third and top of the post area of the root in the range of 
1165,06 and 3,06 MPa. 
Conclusion: This study shows that the titanium post yields larger 
stresses than the carbon post under thermal conditions. 

(Int Dent Res 2011;3:75-80) 
 

 

Introduction 

 

Endodontically treated teeth are usually 
weakened as a result of dental hard tissue structure 

loss due to decay, removal of previous and older 
restorations and root canal treatment procedure. To 

prevent further destruction of these teeth, post-and-

cores are frequently used to restore endodontically 
treated teeth (1, 2). Traditionally, posts were made 

of metal, such as cast nickel–chromium (NiCr), 
prefabricated stainless steel and titanium. Due to 

their good physical properties, these three metals 

were shown to be predictable and successful post 
materials (3).  

Generally cast metal dowel and core were used 

but recently there is an increasing trend towards the 
use of fiber dowel systems (4). Recently, the 

advance of materials and technology, in addition to 
the post systems, several new post materials have 

been introduced in accordance with elevated clinical 
requirements non-metal post and core systems, 

including carbon fiber post system, glass fiber post 
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system and quartz fiber post system (5, 6, 7, 8). 

Prefabricated posts are either metallic posts such as 

stainless steel, titanium alloy and metal posts, which 
have been luted with zinc phosphate cement, or 

non-metallic posts such as posts of zirconia and 
carbon fiber or glass fiber reinforced resin 

composite, which are adhesively bonded in the root 
canal system (9). Fiber dowels provide a more 

esthetic result than the metallic dowels. They have a 

modulus of elasticity similar to dentin structure, thus 
reducing the stress areas at the dowel dentin 

interface (10). Carbon fiber posts have modulus of 
elasticity, which is nearly identical to that of dentine 

and reported to cause less stress in the tooth and 

root fractures.   
The oral environment is subjected to thermal 

stimulant from hot and cold foods and beverages 
(11). Palmer et al determined the maximum and 

minimum temperatures for hot and cold liquids by 
using an intraoral digital thermometer probe in 

which reported temperature extremes that ranged 

from 0°C to 67°C (12). Thermal conductivity and 
thermal expansion of nonmetallic restorative 

materials, metal, and dentin are significantly 
different (12). With rapid improvements and 

developments of computer technology, the finite 

element method (FEM) which has been shown to be 
a useful tool is a powerful numerical method for 

solving the differential equations (13, 14). Design 
and Finite Element Method methodologies play an 

important role in investigations of clinical and 
biomechanical situations in different dental fields. 

The computer program allowed the calculations of 

stresses, strains, and deformations in discretionally 
shaped 3D finite element model representing a 

structure under static loading on tooth-restoration 
complex (15, 16).  

The aim of this study was to evaluate and 

compare the stress distributions of endodontically 
treated tooth restored with carbon and titanium post 

under thermal and mechanical loading conditions.  
 

 

 
Materials and Methods 

 

A 3-dimensional finite element model was 
created to represent an endodontically treated 

maxillary central incisor tooth with its supporting 

structures. The model contained a simulated 
periodontal ligament (PDL) and alveolar bone 

structure (Fig. 1). The root canal was assumed to 
have been shaped to accommodate a commercially 

available fiber post.  
 

 

 
Figure 1. Three-dimensional finite element model 
and illustration of materials.  

 
All of the materials were assumed to be 

homogenous, isotropic and linear elastic. Mechanic 

and thermal properties of materials (Young’s 
modulus (E) and Poisson’s ratio (μ)) were assigned 

according to literature data and given in Table 1.  
One finite element model was investigated to 

evaluate how the different occlusal loads changed 
the stress distribution:  

Model: A 100-N static vertical occlusal load was 

applied on the node at the center of occlusal surface 
of the tooth (Figure 2a and 3a). Rhinoceros 4.0 

(3670 Woodland Park Ave N ,Seattle, WA 98103 
USA) and  Algor Fempro (ALGOR, Inc. 150 Beta 

Drive Pittsburgh, PA 15238-2932 USA) softwares 

were used for the modelling and stress analysis. 
Stress distribution and stress values were then 

calculated by considering the three dimensional von 
Mises stress criteria.  

The thermal load applied to the 3D tooth 
model, having an initial temperature of 0 °C, 

simulated the draught of a hot liquid (65 °C) (Figure 

2b and 3b). Thermal stress values were measured 
after 5 seconds. 

 

 

Figure 2a. Carbon post model   
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Figure 2b. Carbon post model with thermal 

load (65 oC)  

 

 
Figure 3a. Titanium post model  

 

  Figure 3b. Titanium post model with thermal load 

(65 oC)  

 

 

 
 

Results 
 

The values of stress seen at the middle third 

of the labial aspect of the root surface. On the 

contrary, the minimum values were noticed at level 

of both the apical portion of the post and the root 

apex. Assessments were made established on the 

color patterns in Figures 2a, 2b, 3a and 3b where 

warm colors denote higher stresses. 

 
Results were presented by considering Von 

Mises criteria and calculated numerical data were 
transformed into color graphics to better visualize 
mechanical stresses in the models. All stress values 
were indicated in megapascals (MPa).  
 

The analysis of the von Mises stress values for 
carbon post model showed that maximum stress 
concentrations were noted on the coronal third and 
top of the post area of the root in the range of 
436,16 and 3,59 MPa. Titanium post model showed 
that maximum stress concentrations were noted on 
the coronal third and top of the post area of the 
root in the range of 590,55 and 3,05 MPa. Thermal 
stress values for carbon post model showed that 
maximum stress concentrations were noted on the 
coronal third and the top of the post area of the 
root in the range of 509,94 and 6,38 MPa. Titanium 
post model showed that maximum stress 
concentrations were noted on the coronal third and 
top of the post area of the root in the range of 
1165,06 and 3,06 MPa. 
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TABLE 1. The mechanical and thermal properties of the materials 
 

Material/Component 
Elastic Modulus 

(MPa) 
Poisson 

Raito 

Thermal 

expansion(1

0–6/°C) 

Specific heat 

(103 J/kg) 

Thermal 

conductivity

[J/(mm·s°C)] 

Cortical bone (11, 17, 24) 13.700 0.30 10 0,44 0,5868 

Cancellous bone (11, 17, 24) 1.370 0.30 
10 0,44 0,5868 

Dentin (11, 18, 19, 24) 18.600 0.31 
11.4 0,588 0,15 

Ligament (11, 20, 24) 68.9 0.45 
4,1 0,36 0,5 

Gingiva (11, 13, 24) 
3 0.45 

4,1 0,36 0,5 

Gutta-percha (11, 17, 24), 0.69 0.45 
54,9 0,22 0,48 

Adhesive cement (Panavia, 
Kuraray,Japan) (21, 24) 

18.600 0.28 
30 0,197 0,976 

Composite core (Clearfil 

Photo Core, Kuraray, Japan)(*) 

(24) 
18.600 0.26 

39,4 0,2 1,0878 

Nikel-krom (11, 22, 24) 200.000 0.33 
14,3 0,11 66,944 

Porcelain crown (11, 19, 23, 
24) 

68.900 0.28 
13,1 0.25 0.754 

Carbon post (11, 21, 24) 118.000 0.27 
2,2 0,3 6,276 

Titanium post (11, 13, 24) 112.000 0.33 
11,9 0,54 21,9 

* Information from company 

 
 

Discussion 

 

Destructive mechanical tests, such as fracture 
tests, are important for biomechanical analysis of 
tooth and dental restorative materials, as they 
enhance understanding of the behaviour of teeth in 
high loading situations. However, these tests have 
limited capacity to clarify the stress–strain 
relationship in the tooth-restoration complex (25, 
26). The use of nondestructive tests, such as strain 
gauge tests (27), and finite element analysis (FEA) 
(28, 29) is more suitable for understanding the 
failure characteristics of the restorative procedures 
(30, 31). Several studies have made comparative 
investigations using only FEA (21, 29, 30, 31), 
however, this methodology is more representative 
when associated with destructive tests (32), or with 
non-destructive assays such as the strain gauge test 
(26, 33).  

Valid FE analyses have clarified how static 
stresses are distributed within the dental material 

and the tooth tissues. Restoration of endodontically 
treated teeth has become an important aspect of 
dental practice that involves a range of treatment 
options of variable complexity. Recently, post and 
core restorations are the option of choice for 
endodontically treated teeth, but it may makes 
teeth fragile and more susceptible to fracture (34). 
The present study compared the stress distributions 
of carbon and titanium post systems under thermal 
and mechanical loading conditions. According to the 
results of this study, both mechanical properties 
and thermal conditions of the post material 
affected stress distribution.  

Glass and carbon posts show high fatigue and 
tensile strength, and they have a Young’s modulus 
comparable to dentin (17). Under the vertical static 
loads, teeth restored with fiber posts showed 
significantly stronger than those with metallic posts. 
Hot and cold liquids cause thermal stress over the 
time. This phenomenon is very important and needs 
to be investigated. Hot liquid caused more thermal 
stresses when titanium was used. Therefore, from 
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these results it can be concluded that carbon post 
shows better behaviour than titanium when hot 
liquid is used. Titanium post has more thermal 
stress than carbon posts. 

According to the results of the present study, 
the mechanical properties and design of the of the 
post material, and the nature of the material from 
which the post and core are made are very 
important to the distribution of stress. Finite-
element analysis (FEA) has been shown to be a 
useful technique the analysis of stress distributions. 

 

 

 
Conclusion 

 

Within the limitation of this study, it can be 

concluded that the thermal and physical properties 

of posts were important on stress distributions in 

post and core applications. Our study shows that 

the titanium post yields larger stresses than the 

carbon post under thermal conditions.  
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